以"本"为源,夯实基础

■广东省佛山市南海区石门中学 徐守军 刘依舒

近几年,高考试题的命制越来越新颖多变,但是万变不离其宗,大多数高考题都能在教材中找到其"原形".高考对数列的通项公式以及前 n 项和的考查也不例外.通过背景包装、更换数字、变条件、改结论等多种方式对教材的例题、习题进行重新加工,看似平常,实则有很多值得品味的东西.现以 2018 年全国 II 卷数列解答题为例,对其进行溯源,并进行同源变式、引申、提炼,以期对 2019 年的高考复习有所启示.

- 【例 1】 (2018 年高考全国 II 卷,理科第 17 题)记 S_n 为等差数列的前 n 项和、已知 a_1 =-7、 S_3 =-15.
 - (1) 求 {a_n} 的通项公式;
 - (2) 求 S_n , 并求 S_n 的最小值.

【思维导航】等差数列中两个基本量 a_1 和 d,该题考查了通过解方程,求出两个基本量,从而求出 $\{a_n\}$ 的通项公式.接下来代入等差数列的前 n 项和公式,就可以得到 S_n ,最后通过二次函数求最值解得 S_n 的最小值.

【解答过程】 (1) 设 $\{a_n\}$ 的公差为 d,由题意得 $3a_1+3d=15$.

由 $a_1 = -7$, 得 d = 2.

所以 $\{a_n\}$ 的通项公式为 $a_n=2n-9$.

(2) 由 (1) 得 $S_n=n^2-8n=[(n-4)^2-16]$.

所以当n=4时, S_n 取得最小值, 最小值为-16.

【追根溯源】此题源于人教 A 版必修 5 教材第二章等差数列前 n 项和第 51 页例 4:已知等差数列 5,4 $\frac{2}{7}$,3 $\frac{4}{7}$,…的前 n 项和为 S_n ,求使得 S_n 最大的序号 n 的值.该例题中给出了解法分析:等差数列的前 n 项和公式可以写成 $S_n = \frac{d}{2}n^2 + (a_1 - \frac{d}{2})n$,所以 S_n 可以看成函数 $y = \frac{d}{2}x^2 + (a_1 - \frac{d}{2})x$ $(x \in \mathbb{N}^*, \exists x = n)$ 时的函数值.另一方面,容易知道 S_n 关于 n 的图像是一条抛物线上的一些点.因此,我们可以利用二次函数来求 n 的值.

解法一: 由题意知, 5,
$$4\frac{2}{7}$$
, $3\frac{4}{7}$, …的公差为 $-\frac{5}{7}$, 所以 $S_n = \frac{n}{2}[2\times 5 + (n-1)(-\frac{5}{7})] = \frac{75n - 5n^2}{14} = -\frac{5}{14}(n - \frac{15}{2})^2 + \frac{1125}{56}$.

于是, 当n取与 $\frac{15}{2}$ 最接近的整数即 7 或 8 时, S_n 取最大值.

解法二: 由题意可知, 5, $4\frac{2}{7}$, $3\frac{4}{7}$, …的首项为 5, 公

差为 $-\frac{5}{7}$,所以 $a_n=5+(n-1)\times(-\frac{5}{7})=-\frac{5}{7}n+\frac{40}{7}$.

因为 $\{a_n\}$ 是公差 d<0 的等差数列,所以 $\{a_n\}$ 单调递减,要求 S_n 的最大值只要找 $a_n \ge 0$ 且 $a_{n+1} \le 0$ 的 n 的值即可,解得 n=7 或 8.

【深度剖析】高考试题只是把教材原题中的具体的前三项 变成了前三项的和,数值上进行了变动,教材中的首项 $a_1>0$, 公差 d<0 而高考试题中首项 $a_1<0$ 公差 d>0 因此教材中的例 题求 S_n 的最大值, 高考题中求 S_n 的最小值. 考点不变, 还是 考查等差数列的五个量, a_1 , d, n, S_n 和 a_n , 围绕函数与方程 的思想, 求数列 {a_n} 的通项公式. 高中数学教材中明确指出 数列是一种特殊的函数,这意味着数列的本质就是函数,因 此借助函数的思想更能深刻地理解数列的基本问题. 数列是特 殊的函数,就需要从函数的视角理解数列的基本性质.由于函 数视角和函数观点的引入,给数列研究增添了新的活力,形 成了一系列新的研究问题,从而推动了数列的发展.比如在该 题中解决数列前 n 项和的最值问题有两种方法,①利用 a_n : 当 $a_1>0$, d<0 时, 前 n 项和有最大值, 可由 $a_n>0$ 且 $a_{n+1}<0$ 求 得 n 的值; 当 $a_1 < 0$, d > 0 时, 前 n 项和有最小值, 可由 $a_n \le 0$ 且 $a_{n+1} > 0$ 求得 n 的值; ②利用 S_n : $S_n = \frac{d}{2} n^2 + (a_1 - \frac{d}{2}) n$, 即由二 次函数求得 S_n 取最值时n 的值.

变式 1: 等差数列 $\{a_n\}$ 中, a_1 =-7, a_4 + a_6 =2,求 S_n 什么时候取得最小值.

解析: 设公差为 d,则 $a_1+3d+a_1+5d=2$,又因为 $a_1=-7$,解得 d=2,所以 $S_n=n^2-8n=(n-4)^2-16$,所以当 n=4 时, S_n 取得最小值,最小值为-16.

【变式与思考 1】该题主要体现方程思想,在数列的学习中,求未知量的时候,可以根据已知的条件,在已知量和未知量之间建立起联系,从而可以利用解方程求出未知量.等差数列通项或求和中共涉及五个基本量 a_1 、d、n、 S_n 、 a_n ,只要知道其中的 3 个量的值,可以转化成方程来求解.

变式 2: 等差数列 $\{a_n\}$ 中, $a_1 < 0$, $S_3 = S_5$, 求 S_n 什么时候取得最小值. (只要有 a_1 和 d 的倍数关系, 就可求出 S_n 取最值对应的 n)

解法一: 设公差为 d,由 $S_3=S_5$,得 $a_1=-\frac{7}{2}d$,所以 $S_n=\frac{d}{2}$ $n^2+(-\frac{7}{2}d-\frac{d}{2})n=\frac{d}{2}n^2-4dn=\frac{d}{2}[n^2-8n]=\frac{d}{2}[(n-4)^2-16]$,所以当 $n=\frac{d}{2}$